A Fluidity Based First-Order System Least-Squares Method for Ice Sheets

Jeffery Allen1 Tom Manteuffel1 Harihar Rajaram2

1University of Colorado Boulder
Department of Applied Mathematics

2University of Colorado Boulder
Department of Civil, Environmental, and Architectural Engineering

November 10, 2015
Outline:

1. FOSLS Formulations
2. Test Problems
3. Future Plans
Outline:

1. FOSLS Formulations
 - Viscosity Formulation
 - Fluidity Formulation

2. Test Problems

3. Future Plans
Outline:

1. FOSLS Formulations
 - Viscosity Formulation
 - Fluidity Formulation

2. Test Problems

3. Future Plans
Continuity Equation:

\[\nabla \cdot u = 0 \]

Momentum Equation:

\[0 = \nabla \cdot \mu \left(\nabla u + (\nabla u)^T \right) - \nabla p + \rho g, \]

Viscosity

\[\mu = \frac{1}{2} \left(\frac{A}{2} \right)^{-\frac{1}{3}} \left\| \dot{\varepsilon} \right\|_{F}^{-\frac{2}{3}}, \]

\[\dot{\varepsilon} = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right). \]
Rewrite as a First Order System

Definition

\[
\mathbf{U} = \nabla \mathbf{u} = \begin{bmatrix}
\frac{\partial u_1}{\partial x} & \frac{\partial u_2}{\partial x} & \frac{\partial u_3}{\partial x} \\
\frac{\partial u_1}{\partial y} & \frac{\partial u_2}{\partial y} & \frac{\partial u_3}{\partial y} \\
\frac{\partial u_1}{\partial z} & \frac{\partial u_2}{\partial z} & \frac{\partial u_3}{\partial z}
\end{bmatrix} = \begin{bmatrix}
U_{11} & U_{21} & U_{31} \\
U_{12} & U_{22} & U_{32} \\
U_{13} & U_{23} & U_{33}
\end{bmatrix}
\]

First Order System:

\[
\nabla \cdot \mathbf{u} = 0 \quad \text{(Continuity)}
\]

\[
\mathbf{U} = \nabla \mathbf{u} \quad \text{(Definition)}
\]

\[
\nabla \cdot \frac{1}{2} \mu (\mathbf{U} + \mathbf{U}^T) - \nabla p = -\rho g \quad \text{(Momentum)}
\]
Rewrite as a First Order System

Definition

\[
\mathbf{U} = \nabla \mathbf{u} = \begin{bmatrix}
\frac{\partial u_1}{\partial x} & \frac{\partial u_2}{\partial x} & \frac{\partial u_3}{\partial x} \\
\frac{\partial u_1}{\partial y} & \frac{\partial u_2}{\partial y} & \frac{\partial u_3}{\partial y} \\
\frac{\partial u_1}{\partial z} & \frac{\partial u_2}{\partial z} & \frac{\partial u_3}{\partial z}
\end{bmatrix} = \begin{bmatrix}
U_{11} & U_{21} & U_{31} \\
U_{12} & U_{22} & U_{32} \\
U_{13} & U_{23} & U_{33}
\end{bmatrix}
\]

First Order System:

\[
\nabla \cdot \mathbf{u} = 0 \quad \text{(Continuity)}
\]

\[
\mathbf{U} = \nabla \mathbf{u} \quad \text{(Definition)}
\]

\[
\nabla \cdot \frac{1}{2} \mu (\mathbf{U} + \mathbf{U}^T) - \nabla p = -\rho g \quad \text{(Momentum)}
\]

\[
\nabla \times \mathbf{U} = 0 \quad \text{(Curl of Definition)}
\]
Rewrite as a First Order System

Definition

\[
\underline{U} = \nabla \underline{u} = \begin{bmatrix}
\frac{\partial u_1}{\partial x} & \frac{\partial u_2}{\partial x} & \frac{\partial u_3}{\partial x} \\
\frac{\partial u_1}{\partial y} & \frac{\partial u_2}{\partial y} & \frac{\partial u_3}{\partial y} \\
\frac{\partial u_1}{\partial z} & \frac{\partial u_2}{\partial z} & \frac{\partial u_3}{\partial z}
\end{bmatrix} = \begin{bmatrix}
U_{11} & U_{21} & U_{31} \\
U_{12} & U_{22} & U_{32} \\
U_{13} & U_{23} & U_{33}
\end{bmatrix}
\]

First Order System:

\[
\nabla \cdot \underline{u} = 0 \quad \text{(Continuity)}
\]
\[
\underline{U} = \nabla \underline{u} \quad \text{(Definition)}
\]
\[
\nabla \cdot \frac{1}{2} \mu (\underline{U} + \underline{U}^T) - \nabla p = -\rho g \quad \text{(Momentum)}
\]
\[
\nabla \times \underline{U} = 0 \quad \text{(Curl of Definition)}
\]
\[
\text{Trace}(\underline{U}) = 0
\]
Rewrite as a First Order System

Definition

\[\underline{U} = \nabla \underline{u} = \begin{bmatrix} \frac{\partial u_1}{\partial x} & \frac{\partial u_2}{\partial x} & \frac{\partial u_3}{\partial x} \\ \frac{\partial u_1}{\partial y} & \frac{\partial u_2}{\partial y} & \frac{\partial u_3}{\partial y} \\ \frac{\partial u_1}{\partial z} & \frac{\partial u_2}{\partial z} & \frac{\partial u_3}{\partial z} \end{bmatrix} = \begin{bmatrix} U_{11} & U_{21} & U_{31} \\ U_{12} & U_{22} & U_{32} \\ U_{13} & U_{23} & U_{33} \end{bmatrix} \]

Viscosity Formulation:

\[\nabla \cdot \underline{u} = 0 \quad \text{(Continuity)} \]

\[\underline{U} = \nabla \underline{u} \quad \text{(Definition)} \]

\[\nabla \cdot \frac{1}{2} \mu (\underline{U} + \underline{U}^T) - \nabla p = -\rho g \quad \text{(Momentum)} \]

\[\nabla \times \underline{U} = 0 \quad \text{(Curl of Definition)} \]

\[\text{Trace}(\underline{U}) = 0 \quad \text{(Enforced by setting} \ U_{11} = -U_{22}) \]
Outline:

1. FOSLS Formulations
 - Viscosity Formulation
 - Fluidity Formulation

2. Test Problems

3. Future Plans
A problem with this formulation comes in the definition for viscosity.

\[\mu = \frac{1}{2} A^{-\frac{1}{3}} \dot{\varepsilon}_e^{-\frac{2}{3}} \]

\[\dot{\varepsilon}_e = \frac{1}{\sqrt{2}} \left\| \ddot{\varepsilon} \right\|_F \]

\[\ddot{\varepsilon} = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right) \]

The viscosity is near infinite where the glacier experiences small deformations. This is usually overcome by using a small constant in the effective strain rate.
Fluidity Formulation
Move Constants

Viscosity

\[\mu = c_A \left\| \dot{\varepsilon} \right\|_F^{-\frac{2}{3}}, \]
\[c_A = \frac{1}{2} \left(\frac{A}{2} \right)^{-\frac{1}{3}}, \]

Momentum Equation:

\[0 = \nabla \cdot \hat{\mu} \left(\nabla u + (\nabla u)^T \right) - \nabla \hat{p} + \hat{\rho} g, \]
\[\hat{\mu} = \left\| \dot{\varepsilon} \right\|_F^{-\frac{2}{3}}, \quad \hat{p} = \frac{p}{c_A}, \quad \hat{\rho} = \frac{\rho}{c_A}. \]
Another way to turn Stokes for glaciers into a first order system is to start with the deviatoric stress.

\[
\sigma' = 2\dot\mu \ddot\varepsilon = \dot\mu (\nabla u + (\nabla u)^T)
\]

\[
\begin{bmatrix}
\sigma'_{11} & \sigma'_{12} \\
\sigma'_{12} & \sigma'_{22}
\end{bmatrix} = \begin{bmatrix}
2\dot\mu \partial_x u_1 & \dot\mu (\partial_y u_1 + \partial_x u_2) \\
\dot\mu (\partial_y u_1 + \partial_x u_2) & 2\dot\mu \partial_y u_2
\end{bmatrix}
\]
Another way to turn Stokes for glaciers into a first order system is to start with the deviatoric stress.

\[\sigma' = 2\hat{\mu}\ddot{\varepsilon} = \hat{\mu} (\nabla u + (\nabla u)^T) \]

\[
\begin{bmatrix}
\sigma'_{11} & \sigma'_{12} \\
\sigma'_{12} & \sigma'_{22}
\end{bmatrix} =
\begin{bmatrix}
2\hat{\mu}\partial_x u_1 & \hat{\mu}(\partial_y u_1 + \partial_x u_2) \\
\hat{\mu}(\partial_y u_1 + \partial_x u_2) & 2\hat{\mu}\partial_y u_2
\end{bmatrix}
\]
Another way to turn Stokes for glaciers into a first order system is to start with the deviatoric stress.

\[
\sigma' = 2\hat{\mu}\hat{\varepsilon} \\
= \hat{\mu} (\nabla u + (\nabla u)^T)
\]

\[
\begin{bmatrix}
\sigma'_{11} & \sigma'_{12} \\
\sigma'_{12} & \sigma'_{22}
\end{bmatrix} =
\begin{bmatrix}
2\hat{\mu}\partial_x u_1 & \hat{\mu}(\partial_y u_1 + \partial_x u_2) \\
\hat{\mu}(\partial_y u_1 + \partial_x u_2) & 2\hat{\mu}\partial_y u_2
\end{bmatrix}
\]
Another way to turn Stokes for glaciers into a first order system is to start with the deviatoric stress.

\[
\sigma' = 2\hat{\mu}\dot{\varepsilon}
\]

\[
= \hat{\mu} \left(\nabla u + (\nabla u)^T \right)
\]

\[
\begin{bmatrix}
\sigma'_{11} & \sigma'_{12} \\
\sigma'_{12} & -\sigma'_{11}
\end{bmatrix}
= \begin{bmatrix}
2\hat{\mu}\partial_x u_1 & \hat{\mu}(\partial_y u_1 + \partial_x u_2) \\
\hat{\mu}(\partial_y u_1 + \partial_x u_2) & 2\hat{\mu}\partial_y u_2
\end{bmatrix}
\]

Using the Continuity Equation, \(2\partial_x u_1\) can be split into \(\partial_x u_1 - \partial_y u_2\)
Another way to turn Stokes for glaciers into a first order system is to start with the deviatoric stress.

\[
\begin{align*}
\sigma' &= 2\hat{\mu} \dot{\varepsilon} \\
&= \hat{\mu} \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) \\
\begin{bmatrix}
\sigma'_{11} & \sigma'_{12} \\
\sigma'_{12} & -\sigma'_{11}
\end{bmatrix} &= \begin{bmatrix}
\hat{\mu} (\partial_x u_1 - \partial_y u_2) & \hat{\mu} (\partial_y u_1 + \partial_x u_2) \\
\hat{\mu} (\partial_y u_1 + \partial_x u_2) & \hat{\mu} (\partial_y u_2 - \partial_x u_1)
\end{bmatrix}
\end{align*}
\]
Another way to turn Stokes for glaciers into a first order system is to start with the deviatoric stress.

\[
\sigma' = 2\hat{\mu}\ddot{\varepsilon} = \hat{\mu} \left(\nabla u + (\nabla u)^T \right)
\]

\[
\begin{bmatrix}
\hat{\mu}^{-1}\sigma'_{11} & \hat{\mu}^{-1}\sigma'_{12} \\
\hat{\mu}^{-1}\sigma'_{12} & -\hat{\mu}^{-1}\sigma'_{11}
\end{bmatrix} = \begin{bmatrix}
\partial_x u_1 - \partial_y u_2 & \partial_y u_1 + \partial_x u_2 \\
\partial_y u_1 + \partial_x u_2 & \partial_y u_2 - \partial_x u_1
\end{bmatrix}
\]

define the fluidity as \(\phi = \hat{\mu}^{-1} \)
Another way to turn Stokes for glaciers into a first order system is to start with the deviatoric stress.

\[
\sigma' = 2\hat{\mu}\varepsilon \\
= \hat{\mu} \left(\nabla u + (\nabla u)^T \right)
\]

\[
\begin{bmatrix}
\phi\sigma'_{11} & \phi\sigma'_{12} \\
\phi\sigma'_{12} & -\phi\sigma'_{11}
\end{bmatrix} =
\begin{bmatrix}
\partial_x u_1 - \partial_y u_2 & \partial_y u_1 + \partial_x u_2 \\
\partial_y u_1 + \partial_x u_2 & \partial_y u_2 - \partial_x u_1
\end{bmatrix}
\]

Now we have the two equations:

\[
\phi\sigma'_{11} - (\partial_x u_1 - \partial_y u_2) = 0
\]

\[
\phi\sigma'_{12} - (\partial_y u_1 + \partial_x u_2) = 0
\]
Now we just need to figure out what ϕ is in terms of σ'_{11} and σ'_{12}.

\[
\hat{\mu} = \left| \left| \dot{\varepsilon} \right| \right|_F^2 \left| \left| \dot{\varepsilon} \right| \right|_F^{-2} \\
= \hat{\mu}^2 \left| \left| \dot{\varepsilon} \right| \right|_F^2 \\
= \left| \left| \hat{\mu} \dot{\varepsilon} \right| \right|_F^2 \\
= \left| \left| \sigma' / 2 \right| \right|_F^2 \\
= \frac{1}{2} (\sigma'_{11}^2 + \sigma'_{12}^2)
\]
Now we just need to figure out what ϕ is in terms of σ'_{11} and σ'_{12}.

$$\hat{\mu}^{-1} = \left\| \dot{\varepsilon} \right\|_{F}^{2}$$

$$= \left\| \dot{\varepsilon} \right\|_{F}^{2} \frac{4}{3} \left\| \dot{\varepsilon} \right\|_{F}^{2}$$

$$= \hat{\mu}^{2} \left\| \dot{\varepsilon} \right\|_{F}^{2}$$

$$= \left\| \hat{\mu} \dot{\varepsilon} \right\|_{F}^{2}$$

$$= \left\| \sigma'/2 \right\|_{F}^{2}$$

$$= \frac{1}{2} \left(\sigma'_{11}^{2} + \sigma'_{12}^{2} \right)$$
Now we just need to figure out what ϕ is in terms of σ'_{11} and σ'_{12}.

$$
\hat{\mu}^{-1} = \left\| \dot{\varepsilon} \right\|_F \left(\varepsilon \right)^{\frac{2}{3}} \\
= \left\| \dot{\varepsilon} \right\|_F \left(\varepsilon \right)^{\frac{2}{3}} \\
= \hat{\mu}^2 \left\| \dot{\varepsilon} \right\|_F \\
= \left\| \hat{\mu} \dot{\varepsilon} \right\|_F \\
= \left\| \sigma' / 2 \right\|_F \\
= \frac{1}{2} (\sigma'_{11}^2 + \sigma'_{12}^2)
$$
Now we just need to figure out what ϕ is in terms of σ'_{11} and σ'_{12}.

\[
\hat{\mu}^{-1} = \left| \hat{\varepsilon} \right|_{F}^{3/2} \\
= \left| \hat{\varepsilon} \right|_{F}^{-4/3} \left| \hat{\varepsilon} \right|_{F}^{2} \\
= \hat{\mu}^{2} \left| \hat{\varepsilon} \right|_{F}^{2} \\
= \left| \hat{\mu} \dot{\varepsilon} \right|_{F}^{2} \\
= \left| \sigma'_{/2} \right|_{F}^{2} \\
= \frac{1}{2} \left(\sigma'_{11}^{2} + \sigma'_{12}^{2} \right)
\]
Now we just need to figure out what ϕ is in terms of σ'_{11} and σ'_{12}.

\[
\hat{\mu}^{-1} = \frac{2}{3} \frac{\|\dot{\varepsilon}\|}{F} \\
= \frac{4}{3} \frac{\|\dot{\varepsilon}\|_F^3 \|\dot{\varepsilon}\|_F^2}{F} \\
= \hat{\mu}^2 \frac{\|\dot{\varepsilon}\|_F^2}{F} \\
= \frac{\|\hat{\mu} \dot{\varepsilon}\|_F^2}{F} \\
= \frac{\|\sigma'/2\|_F^2}{F} \\
= \frac{1}{2} (\sigma'_{11}^2 + \sigma'_{12}^2)
\]
Now we just need to figure out what ϕ is in terms of σ'_{11} and σ'_{12}.

\[
\hat{\mu}^{-1} = \left| \| \dot{\varepsilon} \|_F^3 \right|^\frac{2}{3} \\
= \left| \| \dot{\varepsilon} \|_F^4 \right| \frac{1}{3} \left| \| \dot{\varepsilon} \|_F^2 \right|_F \\
= \hat{\mu}^2 \left| \| \dot{\varepsilon} \|_F^2 \right|_F \\
= \left| \| \hat{\mu} \dot{\varepsilon} \|_F^2 \right|_F \\
= \left| \| \sigma'/2 \|_F^2 \right| \\
= \frac{1}{2} \left(\sigma'_{11}^2 + \sigma'_{12}^2 \right)
\]
Now we just need to figure out what \(\phi \) is in terms of \(\sigma'_{11} \) and \(\sigma'_{12} \).

\[
\hat{\mu}^{-1} = \left| \dot{\varepsilon} \right|^{2} \frac{2}{F}
\]

\[
= \left| \dot{\varepsilon} \right|^{\frac{4}{3}} \frac{2}{F}
\]

\[
= \hat{\mu}^{2} \left| \dot{\varepsilon} \right|^{\frac{2}{F}}
\]

\[
= \left| \hat{\mu} \dot{\varepsilon} \right|^{\frac{2}{F}}
\]

\[
= \left| \sigma'_{ij} / 2 \right|^{\frac{2}{F}}
\]

\[
= \frac{1}{2} \left(\sigma'_{11}^{2} + \sigma'_{12}^{2} \right)
\]
Now we just need to figure out what ϕ is in terms of σ_{11}' and σ_{12}'.

$$
\hat{\mu}^{-1} = |\hat{\dot{\varepsilon}}| \frac{2}{3} F \\
= |\hat{\dot{\varepsilon}}| \left(\frac{4}{3} F \right)^{\frac{2}{3} |\hat{\dot{\varepsilon}}|} F \\\n= \hat{\mu}^2 |\hat{\dot{\varepsilon}}| F \\\n= |\hat{\mu} \hat{\dot{\varepsilon}}| F \\\n= |\tilde{\sigma}' / 2| F \\\n\phi = \frac{1}{2} (\sigma_{11}'^2 + \sigma_{12}'^2)
$$
Fluidity Formulation

Stress-Gradient-Fluidity

Stress-Gradient-Fluidity Formulation

\[\phi \sigma'_{11} - (\partial_x u_1 - \partial_y u_2) = 0, \]
\[\phi \sigma'_{12} - (\partial_y u_1 + \partial_x u_2) = 0, \]
\[\partial_x u_1 + \partial_y u_2 = 0, \]

Definition of \(\sigma' \)

Continuity Equation

\[-\partial_x \sigma'_{11} - \partial_y \sigma'_{12} + \partial_x \hat{p} - f_1 = 0, \]
\[\partial_y \sigma'_{11} - \partial_x \sigma'_{12} + \partial_y \hat{p} - f_2 = 0, \]

Momentum Equation

where \(\underline{f} = [f_1, f_2] = \hat{\rho} g \).

Jeffery Allen
Glacial FOSLS
February 10, 2016
Fluidity Formulation

Vorticity

Just like in the Viscosity formulation was want to add an analogous curl equation. First we must define vorticity:

$$\psi \omega - (-\partial_y u_1 + \partial_x u_2) = 0.$$

To match the form of ϕ we let

$$\psi = \frac{1}{2}(\sigma'_{11}^2 + \sigma'_{12}^2 + \omega^2).$$

Using the equations for vorticity, continuity, and the definition of σ', we can construct the gradient of u.

$$\nabla u = \begin{bmatrix} \partial_x u_1 & \partial_y u_1 \\ \partial_x u_2 & \partial_y u_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \phi \sigma'_{11} & \phi \sigma'_{12} - \psi \omega \\ \phi \sigma'_{12} + \psi \omega & -\phi \sigma'_{11} \end{bmatrix}$$
We can now add $\nabla \times \nabla \vec{u} = 0$ to our system to get:

Stress-Gradient-Vorticity-Fluidity Formulation

\[
\begin{align*}
\phi \sigma'_{11} - (\partial_x u_1 - \partial_y u_2) &= 0, \\
\phi \sigma'_{12} - (\partial_y u_1 + \partial_x u_2) &= 0, \\
\psi \omega - (-\partial_y u_1 + \partial_x u_2) &= 0, \\
\end{align*}
\]

Definition of σ', ω

\[
\begin{align*}
\partial_x u_1 + \partial_y u_2 &= 0, \\
-\partial_x \sigma'_{11} - \partial_y \sigma'_{12} + \partial_x \hat{p} - f_1 &= 0, \\
\partial_y \sigma'_{11} - \partial_x \sigma'_{12} + \partial_y \hat{p} - f_2 &= 0, \\
-\partial_y (\phi \sigma'_{11}) + \partial_x (\phi \sigma'_{12}) - \partial_x (\psi \omega) &= 0, \\
-\partial_x (\phi \sigma'_{11}) - \partial_y (\phi \sigma'_{12}) - \partial_y (\psi \omega) &= 0.
\end{align*}
\]

Continuity Equation

Momentum Equation

Curl Equation
Outline:

1. FOSLS Formulations

2. Test Problems
 - Rectangular Domain
 - Rec Domain - Results
 - ISMIP-HOM Benchmark B
 - BenchB - Results

3. Future Plans
Outline:

1. FOSLS Formulations

2. Test Problems
 - Rectangular Domain
 - Rec Domain - Results
 - ISMIP-HOM Benchmark B
 - BenchB - Results

3. Future Plans
with \(\mathbf{g} = |g|[\sin(\theta), \cos(\theta)]^T \), \(\hat{H} = 1 \) km, and \(\hat{L} = 10 \) km.

<table>
<thead>
<tr>
<th>Bottom</th>
<th>Top</th>
<th>Ends</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1 = 0)</td>
<td>(\mathbf{\sigma}' - \hat{p} \mathbf{I}) \cdot \mathbf{n} = 0)</td>
<td>Periodic</td>
</tr>
<tr>
<td>(u_2 = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\nabla \mathbf{u} \cdot \mathbf{t} = 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For the Top boundary we want to impose a stress free condition \((\overline{\sigma} \cdot n = 0)\).

\[
\overline{\sigma} \cdot n = (\overline{\sigma'} - \hat{p} I) \cdot n
\]

\[
= \begin{bmatrix}
\sigma_{11}' - \hat{p} & \sigma_{12}' \\
\sigma_{12}' & -\sigma_{12}' - \hat{p}
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\sigma_{12}' \\
\sigma_{11}' + \hat{p}
\end{bmatrix} = 0.
\]
Assume the glacier is frozen to the bed (no slip)

\[u = 0 \]

This also gives us:

\[\nabla u \cdot t = 0 \]
Assume the glacier is frozen to the bed (no slip)

$$u = 0$$

This also gives us:

$$\nabla u \cdot \mathbf{t} = \begin{bmatrix} \frac{\partial x u_1}{\partial x} & \frac{\partial y u_1}{\partial y} \\ \frac{\partial x u_2}{\partial x} & \frac{\partial y u_2}{\partial y} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0$$
Assume the glacier is frozen to the bed (no slip)

\[u = 0 \]

This also gives us:

\[
\nabla \underline{u} \cdot t = \frac{1}{2} \begin{bmatrix} \phi \sigma'_{11} & \phi \sigma'_{12} - \psi \omega \\ \phi \sigma'_{12} + \psi \omega & -\phi \sigma'_{11} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0
\]
Assume the glacier is frozen to the bed (no slip)

\[u = 0 \]

This also gives us:

\[\nabla u \cdot t = \left[\phi \sigma_{11} + \psi \omega \right] = 0 \]
Assume the glacier is frozen to the bed (no slip)

\[u = 0 \]

This also gives us:

\[\nabla u \cdot t = \left[\begin{array}{c} \frac{\phi \sigma_{11}'}{\psi} \\ \phi \sigma_{12}' + \omega \end{array} \right] = 0 \]
Assume the glacier is frozen to the bed (no slip)

\[u = 0 \]

This also gives us:

\[
\nabla u \cdot t = \begin{bmatrix} \sigma'_{11} \\ \phi \sigma'_{12} + \omega \end{bmatrix} = 0
\]

Finally, assume periodic side boundaries.
Rectangular Glacier

Exact Solution

Downhill Velocity Profile

Problematic Part of Viscosity
Outline:

1. FOSLS Formulations

2. Test Problems
 - Rectangular Domain
 - Rec Domain - Results
 - ISMIP-HOM Benchmark B
 - BenchB - Results

3. Future Plans
Rectangular Glacier
Least Squares Functional

Functional Convergence

- Fluidity
- Viscosity

$O(h)$
$O(h^2)$

Degrees of Freedom

$\|L u^h - f\|$
L^2 Convergence

- Fluidity
- Viscosity
- $O(h^2)$
- $O(h^3)$

Degrees Of Freedom

L2 Error

1.0
0.1
0.01
1.0e-4
1.0e-6
1.0e-8

1200 4320 16320 63360 249600 990720 3947520

Jeffery Allen
Glacial FOSLS
February 10, 2016
Rectangular Glacier
Work Units

<table>
<thead>
<tr>
<th>Level</th>
<th>E</th>
<th>Nonzeros</th>
<th>N</th>
<th>Comp</th>
<th>V-Cycles</th>
<th>WU</th>
<th>Functional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity Formulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>72000</td>
<td>22</td>
<td>1.57</td>
<td>60.82</td>
<td>1.49</td>
<td>8.52 × 10⁻²</td>
</tr>
<tr>
<td>2</td>
<td>320</td>
<td>276480</td>
<td>4</td>
<td>1.78</td>
<td>55.25</td>
<td>1.07</td>
<td>2.85 × 10⁻²</td>
</tr>
<tr>
<td>3</td>
<td>1280</td>
<td>1082880</td>
<td>6</td>
<td>1.94</td>
<td>96.67</td>
<td>11.94</td>
<td>1.05 × 10⁻²</td>
</tr>
<tr>
<td>4</td>
<td>5120</td>
<td>4285440</td>
<td>10</td>
<td>1.97</td>
<td>112.90</td>
<td>93.57</td>
<td>2.40 × 10⁻³</td>
</tr>
<tr>
<td>5</td>
<td>20480</td>
<td>17049600</td>
<td>8</td>
<td>2.01</td>
<td>129.00</td>
<td>346.70</td>
<td>5.98 × 10⁻⁴</td>
</tr>
<tr>
<td>6</td>
<td>81920</td>
<td>68014080</td>
<td>6</td>
<td>2.03</td>
<td>130.30</td>
<td>1061.00</td>
<td>1.49 × 10⁻⁴</td>
</tr>
<tr>
<td>7</td>
<td>327680</td>
<td>271687680</td>
<td>3</td>
<td>2.04</td>
<td>124.30</td>
<td>2033.00</td>
<td>3.76 × 10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 3550.00</td>
</tr>
</tbody>
</table>

Fluidity Formulation							
1	80	72000	4	1.34	13.50	0.05	1.36 × 10⁻¹
2	320	276480	3	1.62	14.67	0.19	3.25 × 10⁻²
3	1280	1082880	3	1.78	16.67	0.94	8.21 × 10⁻³
4	5120	4285440	3	1.86	17.67	4.15	2.06 × 10⁻³
5	20480	17049600	2	1.91	18.00	11.49	5.15 × 10⁻⁴
6	81920	68014080	1	1.95	17.00	22.11	1.29 × 10⁻⁴
7	327680	271687680	1	1.96	19.00	99.34	3.22 × 10⁻⁵
							Total 138.30
Outline:

1. FOSLS Formulations

2. Test Problems
 - Rectangular Domain
 - Rec Domain - Results
 - ISMIP-HOM Benchmark B
 - BenchB - Results

3. Future Plans
The surface of the glacier is prescribed by

\[z_s(x) = -\tan(\theta)x, \]

and the basal topography is prescribed by

\[z_b(x) = z_s(x) - H + \beta H \sin(wx). \]
Benchmark B
Boundary Conditions

\[
\begin{align*}
\text{Bottom} & \quad \text{Top} & \quad \text{Ends} \\
\begin{aligned}
 u_1 &= 0 \\
 u_2 &= 0 \\
 \nabla u \cdot t &= 0
\end{aligned} & \quad \begin{aligned}
 (\sigma' - \hat{p}I) \cdot n &= 0 \\
\end{aligned} & \quad \text{Periodic}
\end{align*}
\]
Outline:

1. FOSLS Formulations

2. Test Problems
 - Rectangular Domain
 - Rec Domain - Results
 - ISMIP-HOM Benchmark B
 - BenchB - Results

3. Future Plans
Horizontal Surface Velocity: $u_1(x, z_5(x))$
Vertical Surface Velocity: $u_2(x, z_s(x))$
Basal Shear Stress: $\sigma_{xz}(x, z_b(x))$
Benchmark B

Benchmark Plots

Pressure Deviation from Hydrostatic

Distance (km)

Pressure (kPa)

-40
-20
0
20
40
0 2 4 6 8 10

-Fluidity
- Taylor–Hood
- Stokes
- HOM
- Mean

Jeffery Allen
Glacial FOSLS
February 10, 2016 20 / 22
Outline:

1. FOSLS Formulations
2. Test Problems
3. Future Plans
Future Work

1. Mass Conservation Study
2. Other Flow Laws
3. More Efficient Iterative Solver ($H(div)$ or H^1)
4. ISMIP-HOM: Benchmark D (basal sliding)
5. Ice Shelf Modeling/Grounding Line Determination
6. Time Dependant Domains?
Questions?

Questions?

Special Thanks (in no particular order) to Tom, Steve, Hari, Chris, Steffen, and too many more to list so simply...

Thanks to the Grandview Gang, Glaciers Group, and anyone else who help in anyway!

This research was supported by:
NASA ROSES award NNX12AB72G,
Department of Energy under grant number DE-FC02-03ER25574,
Lawrence Livermore National Laboratory under contract number B568677,
National Science Foundation under grant number CBET-1249858.